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LElTER TO THE EDITOR 

Floquet theory and the non-adiabatic Berry phase 

D J Moore 
Department of Physics, University of Canterbury, Christchurch 1, New Zealand 

Received 17 April 1990 

Abstract. An efficient calculational algorithm is provided for the operator decomposition 
approach to non-adiabatic Berry phases for systems with periodic Hamiltonians. 

There has been much interest recently in the phase acquired by a system’s wavefunction 
upon cyclic evolution in projective Hilbert space. We will call this phase the Berry 
phase although some authors prefer the term Aharonov-Anandan phase (Bouchiat 
and Gibbons 1988). Theoretical studies of the Berry phase have looked at the formula- 
tion of the problem in general (Berry 1984, Simon 1983, Aharonov and Anandan 1987, 
Jordan 1988) and the relationship of the Berry phase to other fields of physics such 
as field theoretic anomalies (Jackiw 1988) and Jahn-Teller problems (Chancey and 
O’Brien 1988, Ham 1987). Experimental studies have verified the existence of the Berry 
phase for photons travelling down helically wound optical fibres (Tomita and Chiao 
1986) and investigated its implications in such fields as ESR spectroscopy (Gamliel 
and Freed 1989). 

In the past there have been two distinct ways of looking at the Berry phase. Berry 
used the adiabatic theorem to guarantee the cyclic evolution of an initial eigenstate 
of a Hamiltonian varying slowly with time, while Aharonov and Anandan considered 
a general cyclic evolution essentially without reference to the Hamiltonian that gener- 
ated it. In a recent paper (Moore and Stedman 1990b) it was shown that the adiabatic 
assumption in Berry’s work can be removed by a suitable choice of cyclic initial states, 
thereby putting the two approaches on an even footing. Further an operator decomposi- 
tion formalism was developed to calculate the cyclic initial states and their Berry 
phases. However as it stands this calculation takes more labour than a direct calculation 
from the evolution operator so that the formulation provided no computational advan- 
tage. The purpose of this letter is to show that the early work of Shirley on Floquet 
theory (Shirley 1965) provides a way of obtaining results from Moore and Stedman’s 
formalism with less work than is required for a direct calculation, thereby making the 
operator decomposition scheme of some practical importance. 

First we need some results concerning fundamental matrices. Proofs can be found 
in Cronin (1980). Let H be a time-dependent matrix. A non-singular matrix A is a 
called a fundamental matrix of the system of ordinary differential equations i8, = H+ 
if iA = HA. The following lemmas are of pivotal importance. 

Lemma 1. Let A and A‘ be fundamental matrices of i d  = H4. Then there exists a 
constant non-singular matrix X such that A’ = AX. 
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Lemma 2. Let A be a fundamental matrix of id = H4, where H is ?-periodic. Then 
A' with A'(?) = A(r+ ?) is also a fundamental matrix of id = H4. 

We can use these two lemmas to give Floquet's theorem. 

Theorem 1. Let A be a unitary fundamental matrix of id = H 4 ,  where H is Hermitian 
and ?-periodic. Then there exists a unitary ?-periodic B and a constant Hermitian C 
such that A = B eicr. 

In this case we can obviously take H to be the Hamiltonian of some quantum mechanical 
system whose evolution is governed by the time-dependent Schrodinger equation 

id = H4 (1) 
where we have taken h = 1 for simplicity. There are two unitary fundamental matrices 
of particular importance. The first is the unique fundamental matrix U satisfying 
U ( 0 )  = I, this is called the evolution matrix. We write its decomposition as U = Ze'"'. 
The second is the fundamental matrix F = P e'", discussed by Shirley, that has Q real 
and diagonal in some convenient basis {la)},  say an eigenbasis of H ( 0 ) .  Moore and 
Stedman used Z and M to calculate the Berry phase for the evolution (1 1 while Shirley 
used H to calculate P and Q. Now as U and F are both fundamental matrices of (1) 
there exists a constant invertible matrix X with U = FX by lemma 1. Using the fact 
that U ( 0 )  = I it is easy to see that X = F'(0) so that U(r)  = F(t)F'(O).  In the following 
we use this relationship to combine Shirley's approach with that of Moore and Stedman 
to derive an efficient way of calculating Berry phases from the Hamiltonian U. We 
note that Layton er a1 (1990) also use Floquet theory to study Berry phases; however 
they only use it to calculate the evolution matrix. 

First we summarise the two formalisms. Moore and Stedman showed that the cyclic 
initial states {\$m(0))} for the evolution in question are precisely the eigenvectors of 
M and that their Berry phases are given by 

Y, = i  ~ o F ~ 4 0 ~ o ~ l z + 2 1 $ o ~ o ~ ~  dr. (2) 

Thus we need to calculate Z and M. In fact it is sufficient to calculate Z as we can 
then find M from the relationship 

M = -H(O)+iZ(O). (3) 
On the other hand, Shirley calculated the terms in the Fourier expansion 

T 

p =  c p(")e '"w' 
n = - r  

of P, where w = 27r/ ?, from the Fourier expansion 
a3 

H =  c H(")e ' "wr  
n=-m 

(4) 

of H, H'"' being readily calculable using H'" '  = (1/ ?) jb H e-'""'' dr. For convenience 
we introduce the product Hilbert space 9"@3 where the spatial part X is spanned 
by the kets la) and the temporal part 9 is spanned by the kets In) with (tln)=e'"w' 
(Sambe 1973). A basis ket in X O  9 is written Ian). Let HF be the Floquet Hamiltonian 
acting on XeO 9 defined by the matrix elements 

(anIHFIPm) = H:;"+ n ~ 8 , ~ 6 , , , , ,  ( 6 )  
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where the H:; are the matrix elements of H'"' in the basis {la)}.  Further let HF have 
eigenvectors and eigenvalues E=,,.  Shirley showed that the matrix elements of Q 
and the Fourier coefficients of P are given by 

Qmp = - & , o S a p  ( 7 )  

Pr; =(anlspo). (8) 

For a review of several modern applications of this theory see Chu (1989). 
We now show how to combine these two formalisms. Using the fact that U (  t )  = 

F( t )F ' (O)  and F =  P e'@ we find that U ( t )  = P(t)P'(O) exp{iP(O)QP'(O)} and so, as 
P ( t ) p ' ( O )  is ?-periodic and P(O)QP'(O) is constant, we can make the identifications 

Z ( t )  = P ( f ) P + ( O )  (9) 

M = P(0)QPT(O). (10) 

I+,(O)) = P(O)la) (11) 

Now the eigenvectors of M are given by 

and combining this with equation (2) we find that 

We can evaluate the integral using the orthogonality relations 

ei '  d t  = ?S,, loi 
as follows. From the fourier expansion (4) of P we have that 

3i ipip= 1 ( - n w ) p + ( m ) p ( n )  e i i n - m ) w ~  

n.m = --si 

so that 

Thus we can calculate the cyclic initial states and their Berry phases directly from the 
Fourier expansion of the Hamiltonian and less work than is required for calculating 
them from the evolution matrix. 

Here we discuss an elementary example using the above formalism. Consider the 
two-dimensional 2.rrlw-periodic Jahn-Teller Hamiltonian 

discussed in Moore and Stedman (1990a), where we have taken their parameter E to 
be zero for convenience. Upon writing the Floquet basis {Ian)} with a E { +, - }  in the 
order (. . . , I +, l), I -, l), I +, 0), I -, 0), . . .) we can show that the infinite-dimensional 
Floquet Hamiltonian is block diagonal with typical block 

Bu + nw 
- B, + ( n  + l ) ~  

Hn =(  Bb 
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in the basis {I - , ( n  + l)), I + , n)}. H, has eigenvalues 

= ( n + T e 
where e* = B i  + B ; + $ w 2 -  wB,, and corresponding eigenvectors 

l&*,n)=x+l-T n+ l )+y+ l+ ,  n )  (19) 

where B,y, = (-to + B, 7 e)x,, x’, + y t  = 1 and we have chosen x, and y, to be real. 
Using equations (7) and (8) we then find that 

- t w + e  
Q=( 0 -fw - e 

and substituting into equations (11) and (12) we find that the cyclic initial states are 
given by 4,(0) = ( y = ,  x , ) ~  and that they have Berry phases y* = 27rxi, in agreement 
with Moore and Stedman. Thus we can use our formalism to calculate Berry phases 
for simple systems with great ease. 

In the preceding discussion we have shown how to use the work of Shirley to make 
the formalism in Moore and Stedman (1990b) into an efficient computational algorithm 
for calculating the cyclic initial states and their Berry phases for any ?-periodic matrix 
Hamiltonian. We have also given an example of relevance to Jahn-Teller physics where 
the formalism can be used to derive explicit formulae for the Berry phases of a simple 
two-dimensional matrix Hamiltonian. 
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